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Short Papers

Reverse Modeling of Microwave Circuits with
Bidirectional Neural Network Models

Mankuan M. Vai, Shuichi Wu, Bin Li, and Sheila Prasad

Abstract—Neural networks have been developed into an alternative
modeling approach for the microwave circuit-design process. In this
paper, we describe a neural network-based microwave circuit-design
approach that implements the solution-searching optimization routine by
a modified neural network learning process. Both the development of
a microwave circuit model and the searching of a design solution can
thus take advantage of a hardware neural network processor, which is
significantly faster than a software simulation. In addition, a systematic
simulation-based approach to convert conventional circuit models into
neural network models for this design process will be described. The
development of a heterojunction bipolar transistor (HBT) amplifier model
and its applications are demonstrated.

Index Terms—Neural network applications, modeling, optimization
methods.

I. INTRODUCTION

Neural networks have been demonstrated to be a robust modeling
approach to predict the behavior of microwave circuits [1]. In com-
parison with various statistical methods and curve-fitting approaches
for predicting system behavior, the neural network approach features
a learning process which fine tunes neural network parameters to
interrelate the variables being modeled.

In the microwave circuit-design process, a solution is generated
and its corresponding behavior is predicted by a circuit model—either
traditional or neural network. The difference between the desired and
simulated behavior is used to guide the generation of a new solution.
This solution-searching optimization routine iterates until no further
improvement can be achieved.

Neural network computation is a distributed process in which all
the neurons operate in parallel. A software implementation of a neural
network is sluggish since the neurons have to be updated sequentially.
Only hardware implementations, which explore the parallelism of
neural network computing, can fully realize its potential [2], [3]. In
prior efforts at applying neural network models in microwave design,
while the neural network training and modeling operations could
be accelerated by a neural network processor, the solution-searching
optimization (e.g., a gradient method) remained as a software routine
external to the neural network model.

This paper describes a microwave circuit-design approach that
replaces the sequential solution-searching optimization routine by a
modified neural network learning process. This approach allows all
three main components of a neural network-based design process (i.e.,
the training, modeling, and solution searching) to be implemented in
a hardware neural network co-processor.

After a brief review of the background of the modeling of mi-
crowave circuits with neural networks, the new approach will be
described. The application of this approach to the design of het-
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Fig. 1. A feedforward neutral network with two hidden layers.

erojunction bipolar transistor (HBT) microwave amplifiers will be
demonstrated.

II. BACKGROUND

A series of design solutions have to be evaluated in a microwave
circuit-design process. In order to predict the result of employing
certain design parameters, the circuit has to be simulated. It is beyond
the scope of this paper to describe circuit-simulation techniques, but
suffice it to say that circuit simulation is always difficult and time
consuming.

The contribution of neural network models is the replacement
of the circuit model by a fast black-box model. A brief review of
neural networks used in microwave circuit modeling is provided in
Section II-A.

A. Neural Network Modeling

Unlike most modeling and simulation methods, the complexity of
a neural network does not increase exponentially with the number of
components in the circuit being simulated. This renders the neural
network modeling approach very efficient.

Due to the availability of a powerful training algorithm called
back propagation, multilayer feedforward neural networks are most
popular for modeling applications. A multilayer neural network with
four layers (one input layer, two hidden layers, and one output
layer) used for modeling purposes is shown in Fig. 1. Referring
to the notation in Fig. 1,XXX = (x1; � � � ; xi; � � � ; xm) is the input
vector,GGG = (g1; � � � ; gj ; � � � ; gn), HHH = (h1; � � � ; hk; � � � ; hp), and
YYY = (y1; � � � ; yl; � � � ; yq) are the outputs of the first hidden layer,
second hidden layer, and output layer, respectively),uij is the weight
between theith input and thejth neuron in the first hidden layer,vjk
is the weight between thejth neuron in the first hidden layer and the
kth neuron in the second hidden layer, andwkl is the weight between
the kth neuron in the second hidden layer and thelth neuron in the
output layer. The output of the neural network can be computed as

yl =
1

1 + e�

(1)
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where
l is the weighted total input to the output neuronl, which
is defined as


l =

p

k=1

hkwkl (2)

andp is the number of neurons in the second hidden layer. Similarly,
the output of the second hidden layerHHH can be expressed as a
function of the output of the first hidden layerGGG, which can, in
turn, be expressed as a function of the input vectorXXX.

The back propagation training algorithm aims to adjust the weights
of a feedforward neural network in order to minimize the sum-squared
error of the network, which is defined as

E =

S

m=1

1

2

q

l=1

(dml � yml)
2 (3)

where S is the number of training data points,q is the number
of output variables, anddddmmm = [dm1 dm2 � � � dmq] and ymymym =
[ym1 ym2; � � � ; ymq] are themth desired and calculated output
vectors, respectively. This is typically done by continually changing
the values of the weights in the direction of steepest descent with
respect to the error functionE (for a detailed description of the
learning algorithm see [4]).

B. Design Process

The function of a circuit model is to predict the circuit response
corresponding to given design parameters. Since the objective of a
design process is to determine design parameters that produce the
desired outcome, it would be ideal if a circuit model can be used in a
reverse direction to generate design parameters that will produce the
desired response. For example, it has been proposed to create reverse
neural network model training data by specifying design parameters
for a given circuit response [5].

While the need for a reverse model is apparent, microwave
circuits do not have reverse functions. Any attempt to create a
reverse model for a microwave circuit unavoidably captures only
a portion of the system relations. This is because, in general, a
design problem does not have a unique solution. While it presents
no problem in the development of a model that mapsn sets of
possible circuit parameters into the same response, a reverse model
can only capture one of thesen relations and, thus, must discard the
other (n � 1) circuit parameters–response relations. The practice of
microwave circuit design commonly requires a number of solutions
to be generated for a given design target so that the one which is
least sensitive to parameter deviations can be chosen for the purpose
of a better yield rate. A reverse model that is forced to leave out all
but one of the circuit parameters–response relations cannot support
this design requirement.

III. D ESIGN BY A NEURAL NETWORK LEARNING PROCESS

Instead of pursuing an explicit reverse model of the microwave
circuit under design, a novel design approach in which the searching
of a solution is performed with a modified neural network learning
process is developed. This approach begins by training a neural net-
work to model the circuit under design. As described in Section II-A,
the weights of the neural network are adjusted at this stage to
minimize its error function given by (3). The solution searching is
then performed by applying a modified backpropagation learning rule
to the trained network. An initial solution of design parameters is
generated and the trained neural network model is used to predict the
outcome of this solution. The difference between the desired outcome
and the one corresponding to the current solution is calculated and
back propagated through the layers in the neural network. Instead

of adjusting the neural network weights, as originally done in the
training of the neural network, the input variables are modified to
minimize the error function defined in (3), while the weights are kept
unchanged.

This is a very simple modification of the learning process because
we can simply exchange the roles of weights and inputs in the
backpropagation learning rule. This modified learning rule can be
described as

x
0

i = xi � �
@E

@xi
(4)

and

@E

@xi
=

q

l=1

p

k=1

n

j=1

(yl � dl)yl(1� yl)wklhk(1� hk)

�vjkgj(1� gj)uij (5)

wherexi andx0

i are the current and next input variables, respectively,
and � is the learning rate. The other variables are as defined in
Section II-A. It is evident that the operations described in (5) can
be carried out in a distributed fashion. Each neuron can utilize values
propagated back from the next layer to calculate its associated terms
and, in turn, send the results to the previous layer. This feature allows
the solution-searching routine to be implemented in a hardware neural
network processor along with the training and modeling operations.

By comparing this approach with the reverse model proposed in
[5], it is seen that both allow the solution searching to be performed
in a neural network processor without the need of an external
optimization routine. However, this approach has the advantage that
a regular forward model is directly used and there is no need to
explicitly define a reverse model. Since the forward model is used,
all the relations between design parameters and outcomes are retained.
The design process is not forced to make a predetermined selection
among the relations.

Another significant property of this design approach is that multiple
solutions, if they exist in the modeled system, can be found typically
with different initial solutions. This allows a yield analysis to be
performed on the solutions to determine a design that is least sensitive
to parameter deviations.

IV. I MPLEMENTATION

Since the performance of this design approach depends on a trained
neural network model, the accuracy of the forward training is critical.
Generally, we would like to use the fewest training patterns that
statistically represent the problem on hand. The aim of training the
neural network model is to achieve a model that responds correctly
to the design parameters that are used for training (memorization)
and the ability to give good responses to design parameters that are
similar, but not identical, to those used in training (generalization).
Apparently, a neural network model trained with insufficient or
inadequate data cannot be expected to function as a valid model.
On the other hand, a training process can be overwhelmed if it is fed
with training data indiscriminately.

Another problem with training-data preparation is in the source for
the data. Traditionally, data collection is performed by measuring a
real circuit set up under different conditions and is thus often time
consuming and expensive. This type of data collection may even be
impossible in many microwave applications.

A systematic way to prepare the training data and develop the
neural network for the design process is developed. Instead of
performing real circuit measurements, simulation techniques are used
to generate training data with a simulator such as LIBRA1 and
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Fig. 2. An HBT microwave amplifier.

(a)

(b)

Fig. 3. The frequency responses of (a) a flat-band amplifier. (b) A bandpass
fitler designed by this approach.

HSPICE.2 A major portion (e.g., 80%) of these data are used to
train the neural network, and the rest are used to verify the model.
The goal is to achieve similar modeling errors for both the training
and verification of data. Additional data can be provided to reduce
the discrepancy between training and verification. This simulation-
based approach of generating training data also has the advantage
of providing a means to convert a conventional circuit model into a
neural network model for design purposes.

V. APPLICATION EXAMPLE

The capability of this new design approach has been demonstrated
with the design of HBT amplifiers. The circuit diagram of a two-
stage HBT amplifier is shown in Fig. 2. A neural network trained
to model this amplifier was used to synthesize circuits for different

2Advant!, Fremont, CA.

design goals. The design parameters are the nine inductors (Ls1–Ls6,
Lp1–Lp3) and two capacitors (Cp1 andCs1). The circuit response to
be modeled is the frequency response of this amplifier. A commercial
microwave computer-aided design (CAD) tool LIBRA1 was used to
generate 5000 sets of design parameters versus amplifier frequency-
response records. 4000 sets were used to train a neural network model
of the HBT amplifier and the remaining 1000 sets were used to verify
the accuracy of the resulting model.

The application of the amplifier neural network model was tested
on a variety of design cases. Fig. 3 shows the frequency responses
of two circuits designed with the neural network model. It can be
seen in both design cases that acceptable results were produced by
this design approach. The design parameters and their corresponding
frequency responses were verified with LIBRA.

The solution searching (i.e., the modified learning) process is very
fast since the number of adjustable variables is significantly reduced
from that of forward training. It takes several hours to complete
the training of this amplifier neural network model on a typical
workstation, but the design result can be found in a few seconds
(<15 s). The fast design time allows a number of solutions to be
generated from different initial conditions for the same design goal.
A sensitivity analysis process can then be applied to select higher
yield solutions that are less sensitive to design parameter deviations.

VI. SUMMARY

In summary, a design process is developed so that neural networks
assume an active role in microwave circuit design. Instead of being
used passively as fast black-box circuit models, as is conventionally
done, neural networks can be used to create a design by a modi-
fied neural network learning process. A systematic simulation-based
approach is developed to create neural network models from conven-
tional circuit models for the purpose of designing. The performance
of this design approach is demonstrated by the creation of a neural
network model for a two-stage HBT amplifier and the use of the
resulting model to design a few circuits with different frequency
responses.
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